Polygenic Risk Scores: Going Where?

A. Cecile J.W. Janssens, PhD

Research professor of epidemiology Rollins School of Public Health, Emory University

😏 @cecilejanssens

Monogenic Complex/multifactorial

Mutations

Variations (single nucleotide polymorphisms; SNPs)

Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42 103 individuals

Malcolm G Dunlop,¹ Albert Tenesa,² Susan M Farrington,¹ Stephane Ballereau,¹ Henry Charles Control Con

SNP	Location	Estimate	SE	OR
Study populations with	NP genotype data f	for all 10 risk loci (n=	39266)	
rs10411210	19q13	0.12	0.02	1.13
rs9929218	16q22	0.11	0.02	1.11
rs6983267	8q24	0.17	0.01	1.19
rs4779584	15q23	0.13	0.02	1.14
rs4939827	18q21	0.19	0.01	1.21
rs3802842	11q23	0.13	0.02	1.14
rs10795668	10p14	0.11	0.02	1.12
rs16892766	8q23	0.20	0.03	1.23
rs961253	20p12	0.10	0.02	1.11
rs4444235	14q22	0.09	0.01	1.09

10 SNPs Each 0,1,2 risk alleles Total 20 risk alleles

Unweighted score Range : 0 – 20

Weighted score

Range: 0 – 2.7 (namely 2*0.12 + 2*0.11 + + 2*0.09 = 2.7)

Dunlop et al. *Gut* 2013

First mentions of genetic information, susceptibility for common diseases, not yet polygenic models

The new genetics The new genetics in clinical practice John Bell

1998 ASHG PRESIDENTIAL ADDRESS1999Making Genomic Medicine a Reality

Arthur L. Beaudet

1998

SPECIAL ARTICLE SHATTUCK LECTURE

1999Medical and Societal Consequences of the Human Genome Project

Francis S. Collins, M.D., Ph.D.

Early skeptical views

The New England Journal of Medicine

2000

WILL GENETICS REVOLUTIONIZE MEDICINE?

NEIL A. HOLTZMAN, M.D., M.P.H. THERESA M. MARTEAU, PH.D.

Misconceptions about the use of genetic tests in populations

2001

Paolo Vineis, Paul Schulte, Anthony J McMichael

1999 When can a risk factor be used as a worthwhile screening test?

N J Wald, A K Hackshaw, C D Frost

Summary points

To be a worthwhile screening test, a risk factor must be strongly associated with a disorder

Fig 4 Distribution of maternal serum α fetoprotein in pregnancies affected and unaffected by open spina bifida (derived from Wald et al²) and distribution of serum cholesterol in men who did and did not die of ischaemic heart disease (derived from Wald et al¹)

BMJ VOLUME 319 11 DECEMBER 1999 www.bmj.com

article

Polygenic susceptibility to breast cancer and implications for prevention

Paul D.P. Pharoah^{1,2}, Antonis Antoniou³, Martin Bobrow⁴, Ron L. Zimmern², Douglas F. Easton³ & Bruce A.J. Ponder¹

Published online: 4 March 2002, DOI: 10.1038/ng853

- First mention of risk distributions
- Fitted on cancer data from relatives of BC patients
- No mention of individual variants or how to build polygenic risk models

Fig. 1 Distribution of breast cancer risk in the population and in individual cases. Risks are shown on a log scale; the arithmetical average risk for the entire population has been set at 1.0 (see Methods). The risk distribution in individuals who will develop breast cancer (cases) is shifted to the right. The standard deviation describes the spread of risk between high and low values within the population, and thus the potential to discriminate different levels in different individuals.

ACCE model: evaluating genetic tests

• Comprehensive framework

2003

- Key: Disorder & Setting: What is predicted in whom, for what purpose?
- Assessment changes if setting changes (different population or purpose)

Am. J. Hum. Genet. 72:636-649, 2003

Improving the Prediction of Complex Diseases by Testing for Multiple Disease-Susceptibility Genes

Quanhe Yang,¹ Muin J. Khoury,² Lorenzo Botto,¹ J. M. Friedman,⁴ and W. Dana Flanders³

¹National Center on Birth Defects and Developmental Disabilities and ²Office of Genomics and Disease Prevention, Centers for Disease Control and Prevention, and ³Department of Epidemiology, School of Public Health, Emory University, Atlanta; and ⁴Department of Medical Genetics, University of British Columbia, Vancouver

- <u>First</u> study to show <u>how</u> multiple genes can be combined to predict risk, using regression analysis
- Focused on <u>posterior risk for carriers</u> of one or more multiple risk alleles
- (very strong per-allele effects by today's standards (RR 1.5-3.5))

Am. J. Hum. Genet. 74:585-588, 2004

Revisiting the Clinical Validity of Multiplex Genetic Testing in Complex Diseases

To the Editor:

The usefulness of genetic testing to identify high-risk patients for common multifactorial diseases is subject to debate. Optimism about the public health opportunities is counterbalanced with skepticism, since genetic factors appear to play a role in only a minority of patients with complex diseases, the number of genes involved is large, and their penetrance is incomplete (Holtzman and Marteau 2000; Vineis et al. 2001).

A. Cecile J. W. Janssens,¹ M. Carolina Pardo,² Ewout W. Steyerberg,¹ and Cornelia M. van Duijn² Am. J. Hum. Genet. 74:588–589, 2004

Revisiting the Clinical Validity of Multiplex Genetic Testing in Complex Diseases: Reply to Janssens et al.

To the Editor:

We appreciate the comments by Janssens and her associates (2004 [in this issue]) regarding our study on the use of likelihood ratios to improve the prediction of complex diseases by testing for multiple-susceptibility genes (Yang et al. 2003). As Janssens et al. correctly point out, our study considers only the predicted probability of disease for subjects who have all positive testing results, and this is likely to be an infrequent occurrence. We think that the suggestion made by Janssens et

> Quanhe Yang,¹ Muin J. Khoury,² Lorenzo Botto,¹ J. M. Friedman,⁴ and W. Dana Flanders³

- Evaluation of test performance should include <u>all people</u>, also noncarriers of risk alleles
- Proposed using Area under the Receiver Operating Curve (AUC)

http://www.genotrim.nl/

Stop believing the myths about weight loss and GenoTrim™

Introducing the first DNA customized solution for weight!*

Personalized nutritional and lifestyle recommendations from the genetic age. Advice that lasts a lifetime because your genes are not a fad.

GWAS Discoveries

GWAS Catalog

July 2006 · Vol. 8 · No. 7

Predictive testing for complex diseases using multiple genes: Fact or fiction?

A. Cecile J. W. Janssens, PhD¹, Yurii S. Aulchenko, PhD², Stefano Elefante, PhD², Gerard J. J. M. Borsboom, MSc¹, Ewout W. Steyerberg, PhD¹, and Cornelia M. van Duijn, PhD²

article

Higher AUC requires a few variants, not too rare, with stronger effects (say, per allele OR > 1.5)

How to get high AUC: common variants with strong effects

Type 2 diabetes AUC = 0.60				Hypertriglyceri AUC = 0.80	demia
TCF7L2	1.36	SLC30A8	1.10	APOA5 19WW	7.36
KCNJ11	1.25	TSPAN8	1.09	APOA5 -1131CC	5.57
CDKN2A/2B	1.21	CDC123	1.10	APOE non-e3	2.14
PPARG	1.21	WFS1	1.07	GCKR TT	2.11
ADAM30	1.15	TCF2	1.07	TRIB1 AA	2.02
CDNK2A/2B	1.13	ADAMTS9	1.05	TBL2 CC	2.81
IGF2BP2	1.12	HHEX-IDE	1.02	GALNT2 GG	2.10
FTO	1.11	THADA	1.04		
CDKAL1	1.11	JAZF1	1.00		

Lango et al *Diabetes* 2008; Wang et al. *Hum Mol Genet* 2008

AUC = 0.60 AUC = 0.76

AUC = degree of separation between risk distributions of affected and unaffected individuals—nothing more, nothing less

From risk distributions to ROC/AUC: transforming axes

Intended use: Increasing efficiency of healthcare

2008

Polygenes, Risk Prediction, and Targeted Prevention of Breast Cancer

Paul D.P. Pharoah, Ph.D., Antonis C. Antoniou, Ph.D., Douglas F. Easton, Ph.D., and Bruce A.J. Ponder, F.R.S.

Percentile of Population	Relative Risk	Lifetime Risk†	10-Yr Risk at 50 Yr of Age†	Age at Which 10-Y Risk ≥2.3%
			%	γr
5	0.63	6.1	1.5	NA‡
10	0.69	6.7	1.6	NA‡
20	0.77	7.4	1.8	NA‡
40	0.90	8.6	2.1	53
60	1.03	9.7	2.4	49
80	1.20	11.0	2.7	45
90	1.35	12.0	3.0	43
95	1.49	14.0	3.4	41

From The Sunday Times

September 7, 2008

2008

Rival genetic tests leave buyers confused

Firms that offer to predict your risk of disease give worryingly varied results

Nic Fleming

TIMES RECOMMENDS

Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study

Xin Yang,¹ Goska Leslie,¹ Aleksandra Gentry-Maharaj,² Andy Ryan,² Maria Intermaggio,³ Andrew Lee,¹ Jatinderpal K Kalsi,² Jonathan Tyrer,⁴ Faiza Gaba,⁵ Ranjit Manchanda,^{2,5,6} Paul D P Pharoah,^{1,4} Simon A Gayther,^{7,8} Susan J Ramus,^{3,9} Ian Jacobs,^{2,10,11} Usha Menon,² Antonis C Antoniou¹ *Med Genet* 2018;**55**:546–554.

Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders

Maria Stella Calafato, Johan H. Thygesen, Siri Ranlund, Eirini Zartaloudi, Wiepke Cahn, Benedicto Crespo-Facorro, Álvaro Díez-Revuelta, Marta Di Forti, Genetic Risk and Outcome of Psychosis (GROUP) consortium* Mei-Hua Hall Conrad Ivegbe, Assen Jablensky, Rene Kahn, Luba Kalavdijeva

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

The American Journal of Human Genetics 104, 1–14, January 3, 2019 1

Nasim Mavaddat,^{1,*} Kyriaki Michailidou,^{1,2} Joe Dennis,¹ Michael Lush,¹ Laura Fachal,³ Andrew Lee,¹ Jonathan P. Tyrer,³ Ting-Huei Chen,⁴ Qin Wang,¹ Manjeet K. Bolla,¹ Xin Yang,¹ Muriel A. Adank,⁵ Thomas Ahearn ⁶ Kristiina Aittomäki ⁷ Jamie Allen ¹ Irene L. Andrulis ^{8,9} Hoda Anton-Culver ¹⁰

Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach

Timothy Vivian-Griffiths¹ | Emily Baker¹ | Karl M. Schmidt² | Matthew Bracher-Smith¹ | James Walters¹ | Andreas Artemiou² | Peter Holmans¹ | Michael C. O'Donovan¹ | Michael J. Owen¹ | Andrew Pocklington¹ | Valentina Escott-Price¹ ©

genetics

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Amit V. Khera^{1,2,3,4,5}, Mark Chaffin^{®4,5}, Krishna G. Aragam^{1,2,3,4}, Mary E. Haas⁴, Carolina Roselli^{®4}, Seung Hoan Choi⁴, Pradeep Natarajan^{®2,3,4}, Eric S. Lander⁴, Steven A. Lubitz^{®2,3,4}, Patrick T. Ellinor^{®2,3,4} and Sekar Kathiresan^{®1,2,3,4*}

ARTICLES https://doi.org/10.1038/s41588-018-0147-3

VOL. 72, NO. 16, 2018

LETTERS

https://doi.org/10.1038/s41588-018-0183-a

Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals

James J. Lee⁽³⁾¹⁸³, Robbee Wedow^{(3)23,458}, Aysu Okbay^{(3)54,58}*, Edward Kong⁷, Omeed Maghzlan⁷, Meghan Zacher⁸, Tuan Anh Nguyen-Vlet⁹, Peter Bowers⁷, Julia Sidorenko^{10,11}, Richard Karlsson Linnér^{5,612}, Mark Alap Fontana^{9,13}, Tushar Kundu⁹, Chanwook Loo⁷, Hul Li⁷, Puor Ll¹⁹, Pohocca, Powor⁹

Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults

Implications for Primary Prevention

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

Michael Inouye, PuD, ^{abcclas} Gad Abraham, PuD, ^{abcclas} Christopher P. Nelson, PuD, ^f Angela M. Wood, PuD, ^c Michael J. Sweeting, PuD, ^c Frank Dudbridge, PuD, ^{cds} Florence Y. Lai, MPau, ^f Stephen Kaptoge, PuD, ^{ch} Marta Brozynska, PuD, ^{abcc} Tingting Wang, PuD, ^{abc} Shu Ye, MD, PuD, ^f Thomas R. Webb, PuD, ^f Martin K. Rutter, MD, ^{id} Joanna Tzoulaki, PuD, ^{ibcl} Riyaz S. Patel, MD, ^{mun} Ruth J.F. Loos, PuD, ^a Bernard Keavney, MD, ^{ibcl} Harry Hemingway, MD, ^f John Thompson, PuD, ^g Hugh Watkins, MD, PuD, ^{icl} Paos Deloukas, PuD, ^a Emanuele Di Angelantonio, MD, PuD, ^{ch} Adam S. Butterworth, PuD, ^{icl} John Danesh, DPun, ^{cdw} Nilesh J. Samani, MD, ^{fs} for the UK Biobank CardioMetabolic Consortium CHD Working Group

	Number	of SNPs included		AUC		of	nber PRS 30) with
	Only genome-wide significant	PRS with highest AUC	Only genome-wide significant	PRS with highest AUC	ΔAUC	ΔAUC < 0	∆AUC < 0.01
Coronary artery disease	74	6 629 369 ($\rho = 0.1\%$)	0.791	0.806	0.015	2	27
Atrial fibrillation	55	6 705 798 (ρ = 0.3%)	0.766	0.773	0.007	21	30
Type 2 diabetes	72	6 893 037 (ρ = 1%)	0.700	0.725	0.025	7	25
Inflammatory bowel disease	288	6 882 324 (ρ = 10%)	0.614	0.633	0.019	19	23
Breast cancer	572	5158	0.677	0.685	0.008	19	30

Janssens & Joyner, Clin Chem 2019

Polygenic risk scores using weights that can't be observed?

Khera et al. *Nat Genet 2018*

1:1533141:C:T C 1.0687e-05 1 1533141 C T 1:1534614:C:T C 1.1627e-06 1 1534614 C T 1:1535759:T:C C 2.0302e-06 1 1535759 C T 1:1537176:A:C A 3.4776e-06 1 1537437 T C 1:1537437:T:C T 1.2850e-06 1 1537887 C A 1:1537887:A:C C 1.0798e-06 1 1538046 G A 1:1538046:A:G G 8.9945e-07 1 1538046 G A 1:1539369:T:C T 2.2556e-06 1 1539369 T C 1:1539582:G:A G 3.1301e-06 1 1539582 G A 1:1539649:G:T G 5.1564e-06 1 1539649 G T 1:1540727:T:C C 1.5909e-06 1 1540727 C T 1:1541399:A:G A 5.0713e-07 1 1541399 A G 1:1541932:G:A A							
	1:1532042.1.C 1:1533141:C:T 1:1534614:C:T 1:153759:T:C 1:1537437:T:C 1:1537887:A:C 1:1538046:A:G 1:153969:T:C 1:1539582:G:A 1:1539649:G:T 1:1540727:T:C 1:1541399:A:G 1:1541399:A:G 1:1541392:G:A 1:1543311:A:G	C	$\begin{array}{ccccccc} 1.0687e-05 & 1\\ 1.1627e-06 & 1\\ 2.0302e-06 & 1\\ 3.4776e-06 & 1\\ 1.2850e-06 & 1\\ 1.0798e-06 & 1\\ 8.9945e-07 & 1\\ 2.2556e-06 & 1\\ 3.1301e-06 & 1\\ 1.5909e-06 & 1\\ 1.5909e-06 & 1\\ 5.0713e-07 & 1\\ 4.3666e-07 & 1\\ 8.7328e-07 & 1\\ \end{array}$	1533141 1534614 1535759 1537437 1537887 1538046 1539369 1539582 1539649 1540727 1541399 1541932 1543010	T G G C A A T	A C A T T G G C	

http://www.broadcvdi.org/informational/data

1

= 0.000001285

Per allele OR: 1.000001285

Most SNPs had weights lower than 0.00001

Number of alleles in							
	Patients	Controls					
Risk allele	250,001	250,000	500,001				
Non-risk allele	249,999	250,000	499,999				
	500,000	500,000	1,000,000				
Per allele OR	1.0000080000	032					

I comment

Software as a Service for the Genomic Prediction of Complex Diseases

Alessandro Bolli, Paolo Di Domenico, Giordano Bottà

doi: https://doi.org/10.1101/763722

This article is a preprint and has not been certified by peer review [what does this mean?].

PRS panel	SNPs in PRS	AUC (95% CI)	PPV (3%)	Cases in top 3%
Khera full	6630150 0.8	0.805 (0.798–0.812)	12.🥵	1031
Khera 1%	66300 0.8	0.798 (0.792–0.805)	11.66	945
Khera 0.1%	6630 0.3	0.794 (0.788–0.801)	10.88	909
Khera 74	74 0	9 0.789 (0.784-0.797)	19.2	804

PRStage+ser

Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression

Jamie E. Craig¹⁴⁰, Xikun Han^{© 2,340+}, Ayub Qassim^{© 140}, Mark Hassall^{© 1}, Jessica N. Cooke Bailey^{© 4}, Tulor C. Kingud, Anthony D. Khawaja^{© 5}, Jiwan An², Honry Marchall^{© 1}, Duya Charabkhani^{© 2}

EMORY

Moving forward

Doctors

make decisions about Screening, prevention, diagnosis, and treatment often based on incomplete and uncertain information

Predictive analytics from simple risk scores to complex algorithms using artificial intelligence can make these decisions using (gen)omic and other

Data

Essential questions for prediction research: intended use (Why?)

Don't just put variables in a model in data you have available

Validity of PRS

- 1. Independent effects?
- 2. Estimation of weights: how?
- 3. Millions of SNPs: really?

Accuracy of SNP weights

- Even with large n, weights may differ between samples
- Calibration of PRS in intended population crucial but often forgotten

Prediction of atrial fibrillation

METHODS

Participants

We examined the association between AF genetic risk and incident AF in 5 prospective studies. Briefly, these studies were the MDCS (Malmö Diet and Cancer Study),²⁰ MESA (Multi-Ethnic Study of Atherosclerosis),²¹ PREVEND (Prevention of Renal and Vascular Endstage Disease),²² PROSPER (Prospective Study of Pravastatin in the Elderly at Risk),²³ and BioVU (Vanderbilt University Deidentified DNA Biobank).²⁴ We also examined the association between AF genetic risk and stroke in MGH-GASROS (Massachusetts General Hospital Genes Associated

up. Models were adjusted for variables included in a previously validated composite risk score for 5-year AF risk prediction (CHARGE [Cohorts for Heart and Aging Research in Genomic Epidemiology]-AF risk score).⁹ The composite CHARGE-AF risk score included age, height, weight, systolic and diastolic blood pressures, smoking status, antihypertensive medication use, diabetes status, heart failure status, myocardial infarction status, electrocardiographic evidence of left ventricular hypertrophy, and PR interval. Electrocardiographic variables that were not available were omitted from the scores on a study-by-study

Lubitz et al. Circulation 2017

AUC

	Clinical risk factors	+ PRS of 719 SNPs
MDCS	0.75	0.76
MESA	0.80	0.80
PREVEND	0.76	0.80
PROSPER	0.62	0.63
BioVU	0.67	0.67

When do variants contribute to risk?

- Replication of SNP in independent data?
- Statistical significance?
- When its weight is high enough to change risks:

	Number of decimals 0.00000000000 0.00000000 0.000000 0.0000 0.0000 0.0000 0.00	Your rith	
┢			

Better prediction studies: focus on intended use

 Large enough cohort that is representative (enough) for the population in which application of the PRS is foreseen No small or case-control studies. No entire biobank datasets that include 18-90-year-olds if your disease of interest has a more limited range for age of onset (which disease hasn't?) · Clinically relevant follow-up time Both too short and too long can be irrelevant. Adequate consideration of non-genetic predictors Compare with current and (reasonable) alternative opportunities for prediction Appropriate modeling There is tons of guidance on prediction modeling. Follow conventions or justify why you don't. Relevant evaluation Include at least calibration, discrimination, and recalibration (the latter only if the currently used risk model has treatment thresholds) Make fair and informative comparisons with current and alternative prediction opportunities Demonstrate what PRS adds. Show models with and without PRS. Report weights/coefficients for all predictors Responsible interpretation, ideally based on external validation Statistical significance ≠ clinical or public health relevance. Prediction is about relevance. No overinterpretation of small effects and small improvements.

Realistic and honest implications for healthcare.

Highest AUC is not the goal, clinical utility is; small Δ AUC may be statistically significant, but not change medical decisions or stratification of risk groups

Combining mutations and PRS

Nice, but:

- Do we know how these risks are calculated?
- Are they validated? Calibrated? How confident are we about accurate risks in the tails?
- Do people value this level of precision? What is the utility?

Personalized medicine: When? And when not?

 Variability in 'outcome', with some outcomes worth avoiding, e.g., Treatment: works in most, not/less in some Adverse reactions: none in most, severe in some

2. Predictability of variability

Treatment effects: in whom does it not work? Adverse reactions: who has adverse reactions?

3. Incentive to alternative strategy

If expected smaller treatment effect: If expected adverse reactions: Alternative treatment available? Is withholding treatment an option?

Personalized Medicine?

1. Is there variability in the outcome that is worth preventing?

Treatment: works in most, not/less in some Adverse reactions: none in most, severe in some Prognosis: good for most, unfavorable in some

2. Can we predict who will experience poor outcome? In whom will treatment not work? Who will experience adverse reactions? Who has poor prognosis?

3. Are there alternative interventions?

Are alternative treatments available? Is withholding treatment an option?

LETTERS https://doi.org/10.1038/s41588-018-0183-z

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Amit V. Khera^{1,2,3,4,3}, Mark Chaffin^{©,4,5}, Krishna G. Aragam^{1,2,3,4}, Mary E. Haas⁴, Carolina Roselli^{©,4}, Seung Hoan Choi⁴, Pradeep Natarajan^{©,2,3,4}, Eric S. Lander⁴, Steven A. Lubitz^{©,2,3,4}, Patrick T. Ellinor^{©,2,3,4} and Sekar Kathiresan^{©,1,2,3,4+}

Don't overpromise

Confidence interval:

- Predicting for observations in the study sample
- Uncertainty due to random error

'Prediction interval':

- Predicting for new observations, outside the study sample
- Uncertainty due to random + nonrandom error

Making prediction more accurate means improving quality of data and model

Data x Model → Prediction

DNA sequencing

Increasingly cheaper and more accurate

Non-genetic data

What to measure, when, and how?

(Hard)

Modeling disease pathways beyond PRS

 $score = \beta_1 * snp_1 + \beta_2 * snp_2 + \cdots \beta_n * snp_n$

